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The constant-V vortex
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It has been found that the generation of swirl by a continuous rotary oscillation of
a right-circular cylinder partially filled with water can leave a vortex with a radially
constant tangential velocity, V , i.e. ∂V/∂r = 0, excepting a small central core and the
sidewall boundary layer. This vortex maintains ∂V/∂r = 0 during viscous decay by
the turbulent bottom boundary layer, a fact that suggests that ∂V/∂r = 0 is a stable
condition for a decaying vortex.

Theory shows that such a profile of V and its steady decay is possible only
if the radial transport per unit length in the turbulent Bödewadt boundary layer is
TB,t = AV r/2 where A ≈ 0.072 is a dimensionless constant found from the experiment.
This model of turbulent transport is extended to a case with ∂V/∂r 6= 0 by an
analysis of vortex decay in an experiment started from solid rotation. For this case
an additional term proportional to ∂V/∂r is added to the transport equation.

1. Introduction
As first described by Prandtl (1949) the rotary oscillation of a right-circular cylinder

partially filled with liquid produces a rotary wave, and when this wave becomes large
enough to be turbulent, it generates a vortex in the main body of the liquid by a
conversion of wave angular momentum to vortex angular momentum. The process
of rotary oscillation is hereafter referred to as ‘rotillation’ and is described by figure 1
where the cylinder with centre at C and radius R is rotillated about point O at
frequency σ while the vector CR retains a fixed orientation. Thus while the centre C
rotates about the origin O with the rotillation radius ro = OC , the cylinder does not
rotate on its own axis.

In experiments by this author, when rotillation with continuous wave breaking
(spilling) was stopped, the resultant vortex had a tangential speed, V (r), that was
independent of radius, r, throughout the main body of the water. Moreover, the
condition ∂V/∂r = 0 was maintained during decay of the vortex. It will be shown
that ∂(∂V/∂r)/∂t = 0 requires a specific condition on the inward radial transport in
the turbulent Bödewadt boundary layer beneath the vortex.

An ideal Bödewadt layer (Bödewadt 1941) is the laminar boundary layer beneath
a constant-angular-velocity vortex (∂ω/∂r = 0) over a smooth stationary boundary.
A numerical solution due to A. C. Browning may be found in Schlichting (1960). By
analogy with use of the term ‘Ekman layer’ for diverse situations in rotating systems,
the term ‘Bödewadt layer’ is extended here to vortices with turbulent boundary layers
and those with ∂ω/∂r 6= 0.

A rotillation vortex was generated in water H = 20 cm deep, with R = 7 cm,
σ = 17.07 s−1 and ro = 0.20 cm. Figure 2 shows a streak photograph 10 s after the
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Figure 1. Rotillation: a right-circular cylinder of radius R and centre C undergoes a rotary
oscillation at frequency σ about an origin O at distance ro from C . During rotillation the vector
CR retains a fixed orientation.

Figure 2. A streak photograph 10 s after the cessation of rotillation.

stop of rotillation (which had continued for more than a minute) and clearly gives
the impression of a constant streak length. Streak measurements in the interval
2.2 < r < 5.5 cm at 10, 20 and 30 s (figure 3) gave average speeds of 9.56, 8.53,
and 6.83 cm s−1, respectively, with no obvious trend of V with r. At large r the rim
boundary layer was centrifugally unstable and thus caused a wide turbulent boundary
layer. Near the centre, lateral viscous effects were important, so data in these regions
have been omitted. From figure 3 it is assumed that the vortex started with ∂V/∂r = 0
and this state continued during decay. Other experiments with somewhat different σ,
R and ro showed the same characteristic.
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Figure 3. Measurements of V at 10, 20 and 30 s after an abrupt stop to rotillation. Beyond 5.5 cm
the streaks were erratic because of side boundary-layer turbulence. The curves are from a numerical
simulation fit to the data. Note the offset of the ordinate scales to avoid data overlap.

2. Simple models of vortex decay
To motivate a theoretical model of decay for a constant-V vortex it is useful first

to review vortex decay for some simple laminar cases. For a vortex with a laminar
Ekman or Bödewadt boundary layer it is possible to determine the rate of decay of the
vortex from rather simple dynamical arguments. It is then shown that, conversely, by
observing the rate of decay of a vortex one can determine the radial boundary-layer
transport even for turbulent boundary layers.

2.1. Spin down with a laminar Ekman layer

Consider a vortex of constant relative angular velocity ω in a system rotating with
a basic angular velocity Ω, ω � Ω. Other conditions of the theory are circular
symmetry, H � DE , ∂H/∂r = 0, and the neglect of lateral viscous forces in the
interior. Here DE = (ν/Ω)1/2 is the characteristic depth of a laminar Ekman layer,
H is the fluid depth, and ν is the kinematic viscosity. Elementary spin-down theory
for ω(t) involves: (i) the radial Ekman boundary-layer transport, TE , (ii) continuity,
and (iii) the conservation of angular momentum, M, for fluid above the bottom
boundary layer. We ignore initial transients during the formation of the boundary
layer. Thereafter, for H � DE the boundary-layer transients are negligible and the
Ekman boundary-layer transport (radially inward) per unit length of circumference
is simply

TE = V DE/2. (1)

By continuity TE must be balanced by a radially outward interior transport, Ti, which
for interior radial speed U is

Ti = UH, (2)

and so in the interior

U = dr/dt = V DE/2H. (3)
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The angular momentum per unit mass for an interior parcel of fluid is

M = (Ω + ω)r2, (4)

and by conservation of M(dM/dt = 0), with ω � Ω, expansion of dω/dt, and taking
∂ω/∂r = 0, one finds

0 = ∂ω/∂t+ (ωΩ DE/H) (5)

with the solution

ω = ωo exp (−t/ts), (6)

where ts = H/ΩDE is the characteristic spin-down time of the vortex and subscript
o denotes an initial value. This result was first given by Stern (1960) and later, with
a more complete analysis of the transient boundary layer, by Greenspan & Howard
(1963). Maas (1993) has considered the effects of the shape of the free surface on the
decay of similar vortices but for simplicity the assumption is made here that H is a
constant in all cases to be considered.

2.2. Spin down with a laminar Bödewadt layer

The key difference between the Ekman and Bödewadt cases is that in the latter Ω = 0.
Then as the vortex decays, the boundary-layer depth, DB = (ν/ω)1/2, increases. By
analogy with (1) the laminar Bödewadt transport may be written as

TB = CV DB/2, (7)

where, from a direct numerical integration of the Bödewadt layer, C = 1.3485. Then
in analogy with (3),

U = dr/dt = CV DB/2H. (8)

By following the same procedure as in § 2.1, the solution is

ω/ωo = (1 + C(t/H)(ωoν)
1/2)−2, (9)

so at large t, ω decays as t−2 rather than exponentially as for the Ekman problem.
Equation (9) has been confirmed by a numerical integration of spin down with a
well-resolved laminar Bödewadt layer.

In a numerical study Faller (1991) found that the Bödewadt layer is first unstable
at a critical Reynolds number of Rec ≈ 15, where Re = V DB/ν = (V r/ν)1/2 = r/DB .
With rather different numerical methods Pikhtov & Smirnov (1992) found Rec = 18.8
and for absolute instability Lingwood (1997) found Rec = 21.2. These very low values,
by comparison with Rec = 55 for the Ekman layer, are due primarily to radial
convergence and upward flux out of the Bödewadt layer. Savas (1987) has shown
experimental evidence of the instability and estimated Rec = 25. Since several issues
remain in the question of Bödewadt layer instability a more complete discussion is
deferred to a separate communication now in preparation.

In the laboratory experiment of figure 2, Rec would occur for r < 0.5 cm, so except
for a very small laminar central core the bottom boundary layer was unstable and
we refer to it as being turbulent. Note also that the boundary layer flow convects
turbulence inward toward smaller Re, so that at any r the turbulence is augmented
by a flux from larger r.

2.3. The constant-V vortex

For this analysis start with the angular momentum as M = Vr, so the conservation
of M is directly

V dr/dt+ r dV/dt = 0, (10)
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and assume that ∂V/∂r = 0 at all times. Following similar procedures as above one
finds

∂V/∂t = −V 2C∗DB/(2Hr), (11)

where C is replaced by C∗(r) and where now DB = (ν/ω)1/2 = (ν r/V )1/2 is also a
function of r. But because the condition ∂V/∂r = 0 is maintained during decay, i.e.
∂(∂V/∂t)/∂r = 0, the right-hand side of (11) must be independent of r. Thus, taking
∂( )/∂r of (11) gives

0 = (V 2/2H) ∂(C∗DB/r)/∂r (12)

and therefore

C∗ = A r/DB = AV DB/ν = ARe. (13)

In (13) A is an undetermined dimensionless constant and the Reynolds number is
Re = VDB/ν = (Vr/ν)1/2. Accordingly, (11) reduces to

∂V/∂t = −AV 2/2H (14)

with the solution

V/Vo = (1 + AV0 t/2H)−1, (15)

and at large t, V decays as t−1. The turbulent radial transport now is given by

TB,t = AReV DB/2 = AV r/2. (16)

Thus for a constant-V vortex the rate of vortex decay and the boundary-layer
transport are uniquely determined by (15) and (16), respectively. These results have
been verified with a numerical model of the decay of a vortex initially having
∂V/∂r = 0 and in which the radial boundary layer flow was parameterized using (16).
By fitting this model to the data of figure 3 and minimizing the root-mean-square
error (Erms) with A and the unknown Vo as variates, A was found to be A = 0.072
with Vo = 12.0 cm s−1.

The computed curves of V (r) at 10, 20, and 30 s are shown in figure 3 for comparison
with the data. This numerical model included lateral viscous terms for the interior
flow (see §§ 4 and 5), and the term ν ∂(V/r)/∂r in the Navier–Stokes equation was
primarily responsible for the strong decrease of V within r = 2.5 cm. A slight viscous
effect at larger r also may be seen in the curves of figure 3 as t progresses from 10 to
30 s, and the same effect can be imagined in the data. But because this viscous term is
proportional to V/r2 it would be negligible in larger vortices. Computations without
the viscous terms gave ∂V/∂r = 0 at all radii as decay progressed (§ 5).

3. The shape of the free surface
The radial variation of the free surface height, h, in a constant-V vortex is given by

h(r) = h(R)− (V 2/g) ln (R/r). (17)

In figure 4 this profile is compared with a frame from a 16 mm ciné film for a
particularly violent rotillation experiment with R = 7 cm, H = 20 cm, ro = 0.20 cm
and σ = 23.27 s−1. Thus the only difference between this case and that of figure 2 is
the frequency, σ. The figure shows a single frame from this turbulent case when the
rotillation wave had its crest on the right of the scene and its trough on the left.
The approximate intersection of the free surface of the vortex with the cylinder wall
is shown by the line sloping upward from the trough on the left to the crest on the
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Figure 4. (a) A 16 mm ciné photograph of a turbulent rotillation wave and the resultant vortex.
The vortex was filmed from the side, and the edges of the figure are the sidewalls of the cylinder. A
centimetre scale taped to the near wall of the cylinder appears at the centre. Other vertical streaks
are light reflections from the Lucite cylinder. The straight slanted line indicates the approximate
intersection of the water surface (the wave) with the cylinder wall. The wave height maximum is
on the right and the wave trough is on the left. The curved lines indicate the intersection of the
water surface with an imaginary plane through the centre of the vortex. The centre of the vortex
lies about 2 cm off-axis toward the wave maximum and rotates with the wave. (b) The shape of the
free surface for symmetrical constant-V vortices with V = 35, 40, and 45 cm s−1. The radial scale is
r (cm) and matches that of the cylinder above.

right. The vortex central depression is indicated with curved lines. These represent the
intersection with the water surface of a vertical plane through the centre of the vortex.
Despite some uncertainty in detail, the central depression of the vortex is clear with
its centre about 2 cm off the cylinder axis. This centre wobbles with the frequency of
the wave and thus has its average position on the axis of the cylinder.

Beneath the photograph are calculated shapes of the free surface for symmetrical
vortices with V = 35, 40, and 45 cm s−1. The observed vortex depression clearly is
of similar shape relative to the overall slope of the water surface (slanted line) and
suggests a speed in the interval 35 < V < 45 cm s−1.

In this experiment the speed of the rotillation wave at the cylinder wall was
VW = σR = 162.9 cm s−1 compared to the approximate vortex speed V ≈ 40 cm s−1,
about 25% of VW . In the experiment of figure 2 the computed vortex speed was
Vo = 12.0 cm s−1, only 10% of the rim wave speed VW = 119.5 cm s−1.
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Figure 5. An example of streaks from the spin-down experiment at t = 90 s. The exposure time
of the camera shutter was calibrated to be 0.961 s ± 0.013 s. Although this long shutter time gave
overlapping streaks at 90 s it was necessary to assure reasonable accuracy with the shorter streaks
at later times.

4. Decay of a constant-ω vortex with a turbulent boundary layer
Starting from constant ω, but with a turbulent boundary layer rather than the

laminar Bödewadt case, one should expect ω to decay more rapidly at the larger
radii where the Reynolds number is larger. Thus a vortex initially having ∂ω/∂r = 0
should tend toward ∂V/∂r = 0, and because such a state is stable for vortex decay
it is postulated that any vortex of suitable size over a smooth stationary boundary
should approach ∂V/∂r = 0. For the experiment that follows it will be seen that R
is too small and the time too short to produce a reasonable region of constant V ,
although a trend in that direction is apparent.

In a spin-down experiment with ωo = 1.5 s−1, R = 15.24 cm and H = 21.7 cm, streak
photographs were analysed at 90, 120, 150, 180, 210, 240, 270 and 300 s. The steady
spin down of the cylinder to rest took 30 s. Figure 5 shows a photograph of paper-dot
tracers taken with an exposure time of 0.96 s, 90 s after the start of spin down. The
streaks of figure 5 illustrate some of the problems of streak-velocity measurements:
overlapping streaks if long streaks are desired and poor data coverage. A long
exposure time (≈ 1 s) was necessary to obtain streaks of measurable length at the
later stages of decay. The vortex was not perfectly symmetrical, especially from about
9 cm to the rim where the centrifugally unstable shear and the turbulent boundary
layer caused large speed fluctuations. But about 100 or more streaks from each photo
could be reliably measured and figure 6 gives examples of data at t = 120, 210 and
300 s. By 300 s the scatter from a smooth curve was largely due to observational error
in the measurement of streak lengths, about 0.1 cm in length or 0.1 cm s−1 in velocity.
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Figure 6. Spin down of a vortex started from ωo = 1.5 s−1. The curves are from the numerical
model with A = 0.0708, B = −0.00085. Plotted points are smoothed data at radii from 4 to 9 cm.
The straight dashed line gives V (r) at t = 0.

For an appropriate model of vortex decay start with the Navier–Stokes equation
for V (r, z, t) in polar coordinates, assuming circular symmetry (e.g. Schlichting 1960),

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+
uv

r
= ν

(
∂2v

∂r2
+
∂(v/r)

∂r
+
∂2v

∂z2

)
. (18)

For the interior flow: v → V , u→ U, ∂V/∂z = 0, and (18) reduces to

∂V

∂t
+U

(
∂V

∂r
+
V

r

)
= ν

(
∂2V

∂r2
+
∂(V/r)

∂r

)
. (19)

If the viscous terms are set to zero (19) is equivalent to the conservation of angular
momentum, as asserted in § 2.

As before we represent the turbulent boundary-layer transport as TB,t = C∗V DB/2,
but now C∗ should be not only a linear function of Re, as derived for the constant-V
case, but also some dimensionless function of ∂V/∂r as

C∗ = ARe+ B f(K ∂V/∂r). (20)

Higher derivatives of V also may be significant in certain cases. In (20) the coefficient
K , the functional form f( ), and the constants A and B must be determined empirically,
although A should have the same value as found in the constant-V case.
K must have the dimensions of time and should be composed of some combination
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of the variates V , r, DB and the fixed parameters ν, R and H . But of these we can
rule out H and R if these are sufficiently large because then the transport should
not depend upon either. And if we retain V , r, and ν, DB is ruled out, DB being
the combination DB = (rν/V )1/2. Still, there are many combinations of V , r and ν
that can have the dimensions of t such as r/V , (r3/Vν)1/2, etc. Initial tests comparing
a numerical model with data from the experiment using several combinations that
included V in K , such as the two cited above, gave poorer results in comparison with
K = r2/ν, the only possible combination that does not involve V . Thus the simplest
representation of C∗ in terms of ∂V/∂r with no additional factor involving V in the
coefficient K appeared to be optimum.

Turning to the question of f( ) in (20), one can imagine many formulations such as
f( ) = ln ( ), ( )s etc. Once more anticipating the results, calculations with several trial
forms of f( ) all gave inferior results to f(K∂V/∂r) = (r2/ν)∂V/∂r when calculated
profiles of V (t) were fit to observed profiles. In particular, powers of (K∂V/∂r)s that
included S = 1.1 and S = 0.9 clearly showed that S = 1.0 gave the best results. Thus
the simple form

C∗ = ARe+ B(r2/ν)∂V/∂r (21)

appears to give good results, as may be seen below, but of course there are other
possibilities.

Substituting U = C∗V DB/2 as before, (20) becomes

∂V

∂t
= −C∗

(
V
DB

2H

)(
∂V

∂r
+
V

r

)
+ ν

(
∂2V

∂r2
+
∂(V/r)

∂r

)
. (22)

By using the constants ν and H to define dimensionless variates (asterisks) we
may write: V = V ∗ν/H , t = t∗H2/ν, and r = r∗H . Then (22) may be conveniently
represented in the non-dimensional form

∂V ∗

∂t∗
= − 1

2
C∗(V ∗r∗)1/2

(
∂V ∗

∂r∗
+
V ∗

r∗

)
+
∂2V ∗

∂r∗2
+ ∂

(V ∗/r∗)
∂r∗

, (23)

where C∗ = ARe + B(r∗2∂V ∗/∂r∗ − V ∗). The corresponding equation for the non-
dimensional angular momentum, M∗ = V ∗r∗, is

∂M∗

∂t
= − 1

2
C∗(M∗1/2)

∂M∗

∂r∗
+
∂2M∗

∂r∗2
− 1

r∗
∂M∗

∂r∗
, (24)

Optimum values of A and B were found by integrations of (24) and comparisons
with smoothed data from the streak analyses. For ∂M∗/∂r∗ < 0 (i.e. a negative
gradient of the angular momentum, near the rim) the condition ∂M∗/∂r∗ = 0 was
substituted to avoid computational instability. In any case, flow near the rim was
unstable and no reasonable comparison of the model and the data could be expected
there. Smoothed data at seven time levels and six values of r, at 1 cm intervals from
r = 4 to 9 cm, were used (figure 6). Data beyond 9 cm were obviously affected by the
rim, and at small r there were few reliable values.

Integration starting from t = 0, the start of spin down, was not appropriate be-
cause the theoretical model assumes a fully developed turbulent boundary layer with
negligible transients. In the laboratory experiment, however, the boundary layer ini-
tially was stable and laminar, and significant transients must have occurred for more
than the 30 s spin-down time of the cylinder. Therefore, the initial values of V (r) for
the computation were taken from a smooth curve (figure 6) drawn through data at
t = 90 s.
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The computations used many trial combinations of A and B, matching the data to
the computed values, and that combination was found that minimized the Erms. In
each case Erms was based upon the data from all seven time levels (120, 150, 180,
210, 240, 270 and 300 s) and the corresponding computed values at the equivalent
computation times 30, 60, 90, 120, 150, 180 and 210 s.

Figure 6 displays the data points used for the evaluation of A and B. At t = 90 s
the maximum V , 7.0 cm s−1, occurred at r = 9.6 cm, but the maximum M∗ = 7439
was further out at r = 11.9 cm. Apparently the instability beyond r ≈ 12 cm had
penetrated inward beyond maximum M∗ to nearly r = 9 cm so only data for r 6 9 cm
were used for Erms. The best combination of A and B was found to be A = 0.0708,
B = −0.00085 with Erms = 0.0848 cm s−1. The curves of figure 6 correspond to these
values.

A conceptual difficulty arises with the use of K = r2/ν, however, as can be seen for
a flow with ∂ω/∂r = 0 (V/r = ∂V/∂r = ω). A reduction of (22), letting ν = 0, shows
that the A and B terms yield

∂V

∂t
= −

(
AV 2 + BV 5/2 r

ν1/2

)
/2H (∂ω/∂r = 0, K = r2/ν). (25)

The term −AV 2 seems reasonable but the B term contains a higher power of V . Since
B is negative, ∂V/∂t might become positive at large values of V . This would already
be the case, for example, for V = 10 cm s−1, r = 4 cm, ν = 0.01 cm2 s−1 (Re = 63) and
B = −0.00085. A positive ∂V/∂t implies inward interior flow and outward boundary-
layer transport which would seem to be physically unreasonable for a decaying
vortex.

This higher power of V in (25) can be reduced by using K = (r3/Vν)1/2. Then for
∂ω/∂r = 0 the reduction of (22) leads to

∂V/∂t = −(A+ B)V 2/H (∂ω/∂r = 0, K = (r3/νV )1/2), (26)

where both A and B terms are now proportional to V 2. Note, also, that the A term in
(26) is twice that in (14) and (25). This difference arises from the term (∂V/∂r+V/r)
which is simply V/r for (25) but 2V/r for (26). This effect represents a difference in
the horizontal convergence due to the different distributions of radial inflow in the
two cases.

The formulation K = (r3/Vν)1/2 was tested in the numerical model and led to A =
0.069 and B = −0.035 with Erms = 0.1104, significantly higher than with K = r2/ν.
Which formulation of K is preferable? There is no firm basis for a decision, for there
are other possible choices and the best formulation may change with the parameters
of the problem. To accommodate a variable K by introducing a parameter p, a
non-dimensional C∗ may be written as

C∗ = AM∗1/2 + (B/M∗p)(r∗∂M∗/∂r∗ −M∗), (27)

where the two cases above correspond to p = 0 and p = 1/2. It is certainly conceivable
that the optimum p varies continuously with t and with r as V (r) changes during spin
down. But this is only one of many possibilities.

The discrepancies between the numerical calculation and the data at 120 and 150 s
(figure 6) have more than one possible explanation. Most obvious would be inaccuracy
of the data or inadequacy of the theoretical model. However, due to the abrupt initial
deceleration and inward boundary-layer flow there are sizable oscillations, sometimes
called ‘elastoid-inertial’ oscillations, in which rings of interior fluid oscillate in and out.
By the conservation of angular momentum there are corresponding oscillations in V



The constant-V vortex 177

and TB,t, all of which damp out with time. Such oscillations are clearly visible when
there is an abrupt deceleration of the tank to rest and are believed to be the principle
source of the systematic discrepancies noted at 120 and 150 s and may have affected the
initial curve at t = 90 s. Oscillations could not occur in the numerical model because
they are not permitted by the simple first-order (in time) model equations that were de-
veloped and used. Oscillations in a model would require a time-dependent radial equa-
tion, an imbalance between U and TB,t, and perturbations in height of the free surface.

The best result, A = 0.0708, is very close to A = 0.072 found for the constant-V
vortex, thus supporting the theory that the leading term of C∗ in such models should
be A Re with A ≈ 0.071.

5. Stresses, torque, and the generation of a steady, constant-V vortex
5.1. Torque and stresses

In the derivation of (14), developed for only the interior flow, viscous stresses at
the bottom were not explicitly included. Nevertheless their effect on the decay of
the vortex was represented by radial convergence in the bottom boundary layer and,
through continuity, the corresponding outward flow in the interior. Therefore the
right-hand side of (14) represents the effect of this bottom stress at each value of r.

The rate of change of the angular momentum of the fluid at radius r equals the
torque, Tq(r), at the bottom boundary and is

Tq,o(r) = 2πr

∫
(∂V/∂t) dz = −2πrAV 2/2. (28)

Then the stress of the turbulent Bödewadt layer on the bottom boundary is

τ0(r) = AV 2/2. (29)

5.2. The initial, steady-state vortex and the required torque

In the experiment of figures 2 and 3 the flow was not observed until 10 s after the
stop of rotillation. Nevertheless, because ∂V/∂r = 0 persisted it is presumed that this
condition prevailed at t = 0, the stop of rotillation, and was the time-averaged flow
during rotillation. This assumption is generally supported by the free surface shape
of figure 4.

Although (28) was derived for a slowly decaying vortex, it also should apply well
to a steady constant-V vortex. Then the negative torque of (28) must be balanced by
a positive torque from the breaking/turbulent rotillation wave near z = H , Tq,H (r).
While there is little hope of theoretically deriving the magnitude of Tq,H (r), the linear
r dependence seems reasonable in view of the roughly linear dependence of the wave
amplitude upon r. But it is also conceivable that within the turbulent wave there is a
radial redistribution of Tq,H (r) to satisfy conditions imposed by the interior flow and
the bottom boundary layer.

While the concept of an adjustment of the source to satisfy interior and end
conditions may at first seem bizarre, there is at least one published example (and
perhaps others) in which this was precisely the case. In a source/sink experiment in
a rotating basin (Faller 1960) water was withdrawn (the sink) from a vertical slot
in the eastern boundary of a pie-shaped sector and was supplied from a western
boundary current (the source). Interior geostrophic dynamics and Ekman boundary
layer suction and pumping dictated a Gaussian lateral distribution of the flow from
source to sink, the jet narrowing as it approached the sink. The interior and end
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Figure 7. V (r) from a numerical model based upon (30) starting from Vo = 10 cm s−1. Solid lines
are for ν = 0 and dashed lines are for ν = 0.01 cm2 s−1. Top curves are for S∗ = 1.42× 107 and
lower curves show the decay with S∗ = 0.

constraints required that the source water at the western boundary spread out to
a Gaussian lateral distribution with a width proportional to the square root of the
distance from the source to the sink. Thus it is speculated that in the present problem
the primary radial distribution of torque provided by the breaking wave may not
have been linear with r but may have been redistributed by the turbulence to satisfy
the requirement of a constant-V vortex.

5.3. Lateral viscous effects

To numerically test the importance of lateral viscous effects in a case initially with
∂V/∂r = 0 but maintained by a torque, (24) was modified by the addition of a
non-dimensional source of angular momentum per unit mass

S∗ = AV 2H2/2ν2

to give

∂M∗

∂t∗
= − 1

2
C∗(M∗)1/2 ∂M

∗

∂r∗
+
∂2M∗

∂r∗2
− 1

r∗

(
∂M∗

∂r∗

)
+ S∗r∗. (30)

Figure 7 shows V (r) for integrations of (30) starting with Vo = 10 cm s−1,H = 20 cm,
R = 7 cm, ν = 0.01 cm2 s−1 or 0, A = 0.071, and B = −0.00085. First considering the
case ν = 0, the end conditions were ∂V/∂r = 0 at r = 0 and at r = R. Then the source
required to maintain V = 10 cm s−1 at all r was S∗ = 1.42× 107, exactly the value
required from theory. With S∗ = 0 the flow decayed as shown by the solid horizontal
lines at 72.6 s and 363 s.

With lateral viscous effects (dashed lines) and the end conditions V = 0 at r = 0
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and at r = R, the flow decayed rapidly at small r but soon approached the steady state
shown for t = 72.6 s. Nevertheless V ≈ 10 cm s−1 was maintained over a large range
of r. (The hump in V toward the rim was caused by the substitution of ∂M∗/∂r∗ = 0
for ∂M∗/∂r∗ < 0 (near the rim) needed to avoid computational instability.) In reality
of course the turbulent rim boundary layer would be much wider than in the
computations. These computations confirm that a continuous source S∗ can generate
a steady interior flow with ∂V/∂r = 0 as appears to have been the case for the
rotillation experiments.

6. Conclusions
The following conclusions are at present restricted to and refer to symmetric vortices

in relatively deep liquids over smooth, stationary boundaries and with turbulent
Bödewadt boundary layers having Re < 100. The vortices must be large enough that
interior lateral viscous effects are negligible and side boundary layers are remote.

(i) In addition to other special vortices such as the Vr vortex, ∂M/∂r = 0 and
the constant angular velocity vortex, ∂ω/∂r = 0, we may add the constant-V vortex,
∂V/∂r = 0. Such a vortex has been measured in rotillation experiments from streak
photographs of the free surface and is supported by an observation of the shape of
the free surface in a similar case with more extreme turbulence.

(ii) During decay such a vortex maintains ∂V/∂r = 0, i.e. ∂(∂V/∂r)/∂t = 0. This
condition leads directly to the specific result that a dimensionless factor, C∗, that char-
acterizes the turbulent radial boundary-layer transport must be given by C∗ = ARe,
where Re = V DB/ν = (Vr/ν)1/2 = r/DB . From the experimental data A ≈ 0.072.

(iii) From a numerical model and related theory, a constant-V vortex will occur
in a steady state when there is a continuous source of angular momentum that is
proportional to radius.

(iv) The radial boundary-layer transport (per unit length of circumference) in a
constant-V vortex is given by TB,o =C∗V DB/2 =A(Re/2)(Vrν)1/2 =AVr/2 =AM/2.
Thus the transport is proportional to the local angular momentum. The stress of the
fluid on the boundary is τo = ρAV 2/2.

(v) For a vortex with ∂V/∂r 6= 0 the radial transport and stress may be found by
using C∗ = ARe+ B(r2/ν)∂V/∂r. The best fit to the experiment, started from solid
rotation, gave A = 0.0708, B = −0.00085. But this formula and the associated value of
B are uncertain and may well vary with V (r) and its derivatives. The value A ≈ 0.071
seems relatively secure, however, since two quite different experiments gave nearly the
same value.

Extensions of these results to higher Re, rough surfaces and rotating systems are
quite practical. With boundary roughness an additional parameter such as zo/DB ,
where zo is a roughness length, would appear. Since the experiments involve only
the measurement of V (r), ∂V/∂r and the rate of decay, the same general procedure
could be used in steadily rotating systems where the ratio ω/Ω, a Rossby number,
would be an additional parameter. Detailed numerical models to test the turbulent
boundary-layer transport relations at low Reynolds numbers would be valuable but
must include curvature and ∂V/∂r, and must span a sufficient range of r to account
for the horizontal and vertical convection of turbulence inherent in such flows.

These results for turbulent boundary-layer transport are not necessarily restricted
to symmetrical vortices but may be applicable in more general problems of curved
flow. Perhaps the most restrictive condition will be that transients in the free-stream
flow should be small.



180 A. J. Faller

The author is indebted to Dr John Whitehead at the Woods Hole Oceanographic
Institution for the use of its fluid dynamics laboratory for the recent vortex decay
study and for the rotillation experiments conducted during a sabbatical year from the
University of Maryland, 1977–78. The early research on rotillation was supported in
part by the National Science Foundation under Grant ATM 76-82051.

REFERENCES
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